IronGAP

    For a complete description of the models and data see the pre-print:

    Daniele Dragoni, Thomas D. Daff, Gabor Csanyi and Nicola Marzari, Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron, 2017.

    GAP models

    To make use of GAP models you will need the GAP Software.

    Name Files Information
    gp33b gp33b.tar.gz Potential trained and tested in arXiv preprint
    Fe_bcc_bulk_vac_multivac_surf_gamma_int_diint.xyz.gz Combined training data for gp33b
    http://materialscloud.org/archive/2017.0006/v1/ Materials cloud resource for data

    Training Data

    DFT Data used for training. Calculations have been run with Quantum ESPRESSO. See the input files for a complete description of the parameters used.

    Configuration type config_type File Description ecutwfc k-points k-point spacing Raw input/output
    Ry A-1
    primitive slice_sample_high bcc_primitive_high.xyz 2000 bcc cell deformations from MC slice sampling 144 for virials, 90 for energies and forces 121 x 36 x 47 to 28 x 31 x 43 0.0145 to 0.0150 prim.tar.xz prim_v.tar.xz
    bcc_primitive_expanded_high.xyz configurations from above at +2.4% equilibrium volume (~1000 K) 120 x 36 x 46 to 27 x 31 x 43 0.0145 to 0.015 prim_x.tar.xz prim_xv.tar.xz
    bcc_primitive_contracted_high.xyz configurations from above at -1.9% equilibrium volume 122 x 36 x 47 to 28 x 31 x 44 0.0146 to 0.0150 prim_c.tar.xz prim_cv.tar.xz
    bulk phonons_54_high bcc_bulk_54_high.xyz 167 x 54 atom cell from MD at 400, 600, 1000, 1400K. volumes at 0%, +2.1%, -2.1% equilibrium no virials, 90 for energies and forces 4 x 4 x 4 0.0292 to 0.0296 bcc_bulk_54.tar.xz
    bcc_bulk_54_expanded_high.xyz 50 configurations from above recomputed at equilibrium volume +3.5% 4 x 4 x 4 0.0291 bcc_bulk_54_expanded.tar.xz
    bcc_bulk_54_expanded_2_high.xyz 14 configurations from above recomputed at equilibrium volume +4.8% 4 x 4 x 4 0.0289 bcc_bulk_54_expanded_2.tar.xz
    phonons_128_high bcc_bulk_128_high.xyz 11 x 128 atom cell from MD at 800K, equilibrium volume 3 x 3 x 3 0.0294 bcc_bulk_128.tar.xz
    bcc_bulk_128_expanded_high.xyz 79 x 128 atom cell from MD at 800K, -2.1%, +2.1%, +3.6% equilibrium volume 3 x 3 x 3 0.0291 to 0.0296 bcc_bulk_128_expanded.tar.xz
    vacancy monovacancy_53_high bcc_monovacancy_53_high.xyz 381 x 53 atom cell from MD at 400, 600 1000K. volumes at 0%, +2.1%, -2.1% equilibrium 4 x 4 x 4 0.0292 to 0.0296 bcc_monovacancy_53.tar.xz
    monovacancy_127_high bcc_monovacancy_127_high.xyz 57 x 127 atom cell from MD at 800K. equilibrium volume. 3 x 3 x 3 0.0294 bcc_monovacancy_127.tar.xz
    doublevacancy_126_high bcc_doublevacancy_126_high.xyz 39 x 126 atom cell 3rd nearest neighbour double-vacancy from MD at 800K. equilibrium volume 3 x 3 x 3 0.0294 bcc_doublevacancy_126.tar.xz
    doublevacancy_126_2NN_high bcc_doublevacancy_126_2NN_high.xyz 24 x 126 atom cell 2nd nearest neighbour double-vacancy from MD at 800K. equilibrium volume 3 x 3 x 3 0.0294 -
    doublevacancy_126_1NN_high bcc_doublevacancy_126_1NN_high.xyz 23 x 126 atom cell 1st nearest neighbour double-vacancy from MD at 800K. equilibrium volume 3 x 3 x 3 0.0294 -
    trivacancy_100_125_high bcc_trivacancy_100_125_high.xyz 15 x 125 atom cell in {100} plane from MD at 800K. equilibrium volume 3 x 3 x 3 0.0294 -
    trivacancy_110_125_high bcc_trivacancy_110_125_high.xyz 31 x 125 atom cell in {110} plane from MD at 800K. equilibrium volume 3 x 3 x 3 0.0294 -
    trivacancy_111_125_high bcc_trivacancy_111_125_high.xyz 29 x 125 atom cell in {111} plane from MD at 800K. equilibrium volume 3 x 3 x 3 0.0294 -
    quadvacancy_124_high bcc_quadvacancy_124_high.xyz 14 x 124 atom cell from MD at 800K/1000K. equilibrium volume 3 x 3 x 3 0.0294 -
    quinvacancy_123_high bcc_quinvacancy_123_high.xyz 12 x 123 atom cell from MD at 600K. equilibrium volume 3 x 3 x 3 0.0294 -
    self interstitials self_interstitial_100_high bcc_self_interstitial_high.xyz 21 x 129 atom configuration. interstitial along 100. MD at 100, 300K. equilibrium volume 3 x 3 x 3 0.0294 -
    self_interstitial_110_high 12 x 129 atom configuration. interstitial along 110. MD at 100, 300K. equilibrium volume. -
    self_interstitial_111_high 37 x 129 atom configuration. interstitial along 111. MD at 100, 300K. equilibrium volume. -
    self_interstitial_xxy_high 24 x 129 atom configuration. interstitial along xxy. MD at 100, 300K. equilibrium volume. -
    self_interstitial_tet_high 25 x 129 atom configuration. tetrahedral interstitial. MD at 100, 300K. equilibrium volume. -
    self_interstitial_oct_high 16 x 129 atom configuration. octahedral interstitial. MD at 100, 300K. equilibrium volume. -
    self_di_interstitial_npc_130_high bcc_self_di_interstitial_npc_130_high.xyz 18 x 130 atom configuration. Non-parallel di-interstitials. MD at 300K. equilibrium volume. 3 x 3 x 3 0.0294 -
    surface surface_100 bcc_surface.xyz 55 x 12 atom 100 surfaces. MD at 300 K with movement only in z direction. equilibrium volume. 16 x 16 x 1 0.0221 x 0.0221 x 0.0317 -
    surface_110 49 x 12 atom 110 surfaces. MD at 300 K with movement only in z direction. equilibrium volume. 19 x 22 x 1 0.0227 x 0.0227 x 0.0263 -
    surface_111 43 x 12 atom 111 surfaces. MD at 300 K with movement only in z direction. equilibrium volume. 13 x 13 x 1 0.0222 x 0.0222 x 0.0400 -
    surface_211 54 x 12 atom 211 surfaces. MD at 300 K with movement only in z direction. equilibrium volume. 9 x 14 x 1 0.0226 x 0.0230 x 0.0265 -
    gamma surface gamma_surface_110 bcc_gamma_surface.xyz 2500 x 12 atom 110 gamma surface. short MD starting from each of 10x10 grid of gamma shifts at 300K. equilibrium volume 3 x 10 x 14 0.0277 x 0.0253 x 0.0254 -
    gamma_surface_112 2449 x 12 atom 112 gamma surface. short MD starting from each of 10x10 grid of gamma shifts at 300K. equilibrium volume 3 x 16 x 10 0.0240 x 0.0256 x 0.0252 -

    Units

    Conversions are included here to give a complete trace of the values used.

    Configurations in `.xyz` format use GAP units: energies in eV, forces in eV/A, virial in eV)

    Quantum ESPRESSO version 5.1 uses NIST CODATA 2006 units internally: http://physics.nist.gov/cuu/pdf/all_2006.pdf.

    QE Final energies are output in Ry and converted to eV using aiida units 13.6056917253 (from /aiida/common/constants.py Aiida v0.6.0 ).

    QE forces are in Ry/au and converted to eV/A using aiida units 13.6056917253/0.52917720859.

    QE stress is output in Ry/bohr**3 and converted to GPa with aiida units 14710.505401859533. The stress is finally converted to a virial in eV using the volume and conversion value from CODATA 2006 160.2176487 with no change of sign.

    Topic revision: r2 - 05 Jul 2017, TomDaff
    Molecular Modelling

    CUni120px.png
    Engineering Laboratory

     

    Log In
    Copyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.